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Abstract-In general. inelastic deformation is accompanied by internal mechanical stresses which
abo persist in the absence of external loads. A fundamental quantity for determining the state is
the stress function tensor (or tensor potential). a field which can be calculated in terms of the
incompatibility tensor. also a field. This tensor is not given a priori. but follows from the physics
of th.: prohlem. Ditferential geometry is a most important and elegant tool to deal with the internal
m.:chanical st'lte. h,,'h "" ,h.. q('o",elri(' ""c/ /111 'he .•,,,,ie "ic/t' (the concept of mutually dual strain
stal': and stress statc). If stress-free strain is the cause of the internal stresses. then Riemannian
geomelry is adt·quate. More general geometries describe defects. namely Riemann-Carlan geClmetry
dcscribes dislocations in thc form of Cartan's torsion of the strain space. and nonmetric (alline)
gt·om.:try the point def.:cts v.tcancy. self-interstitial and shcar faull in the form of nonmetricity (a
t.:nsor field) Ill' thc strain space. The spl'Cific response to dislocations is torque stress which arises
as Cartan's torsion I>f th.: stress space. whereas that to point derects is moment strcss without torque
enh:ring as the rwnmetricity l>f the stress space. The fundamental duality betwlocn strain space .lIld
slr.:ss sp'lce gives the theory a particul,tr symmetry. Physical reali7.ations of such (material) spaces
an: the allin.: point structures. e.g. the Bravais lattices.

I. INTRODUCTION

The inlernalllledJanical slale is lhe stress-slrain stule which persists without the action of
exlanal forces or loads. In the relutively restricted field of the common linear elasticity
lheory il satisfies the field elJuations

and the constitutive law

where

(',fT'l = O. (1" = (11' equilibrium,

(I)

(2)

(3)

(4)

We do not write down the boundary conditions for stress and strain, becuuse their treatment
is of.t more technicul nuture und does not give us much physical insight.

In (I) the symmelric lensor " is the so-called incompatibility tensor. It measures the
dcvi.ttion from compatibility which is lhe speciul case for" = O. Incompatibility arises when
nonlitting mutcriul clements are forced by elastic deformation to form a compact body.
Only in the computiblc cuse can the strain field be represented as the (symmetrized) gradient
of the elastic vector field of displ'lcements. This situation would arise if we considered the
external load problem. in which, beside" = 0, the volume density of external forces would
occur, namely in eqn (2). .

For the internal stress problem it is suggestive, although not the only possibility, to
satisfy identically the equilibrium equations by the stress function ansatz (Beltrami, 1892;
Kroner. 1954. 1955):
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( 5)

where for obvious reasons the symmetric tensor X is called the second-order stress jimction
or tensor potential. Note that Airy's stress function is a special case of X.

If (5) is now substituted in (I) via part 2 of (3) we obtain the field equation for 7.. For
elastic isotropy

(6)

(7)

If (5) with (3), (4) and (6) is substituted in (l) we obtain, after a simple calculation. the
field equation for 7.' :

(8)

The solution of this equation leads to the internal stress st'lte via (7) and (5). Note that (8)
has a particularly simple Green's function.

E4uation (8) contains an extra, or gauge, condition which has to do with the fact that
7. is not uniquely define~ by (5). [n this respect, X is analogous to the vector potential Aof
electrodynamics. Like A. also Xis a fundamental quantity of the theory.

Naturally. the anisotropic stress function ansatz is much more involved. Its general
form has heen found only recently (Kroner. 1990,1). Let

(9)

(10)

( II )

he the fundamental differential operators of anisotropic linear elasticity theory. Look for
a (symmetric) tensor potentiall/Jk' such that

( 12)

A routine calculation yields

( 13)

( 14)

Since fourfold differentiations are needed to get the stress from the tensor potentiall/J. this
one might also be called the fourth-order stress jimctiotl (tensor). Of course, the ansatz
(13,14) is also valid in the isotropic case. where f(V) - Vh.

Note that the scalar sixth-order differential operator feV) is the same as that which
arises in other anisotropic elastic problems. e.g. those with external loads. All knowledge
accumulated in these cases (concerning f) can be utilized also in our present problem. In
particular. much is known about the Green's function of the operator f(V).

Within the fr.lme of continuum mechunics it is clear how the internal mechanical stutc
can be calculated, once the distribution of stress-strain sources, i.e. the tensor field" is
known. Usually. however, " is not given a priori but has to be found from the physics of
the problem. To get some general view on this is the topic of the present article. On this
occasion we can also learn something about the nonlinear theory. [n fact. it has proven
most useful to apply to our problem the mathematical language of differential geometry,
which is basically nonlinear and well elaborated.
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~ DIFFERE;\:TIAL GEOMETRY IN CONTINUUM MECHANICS

The general concept of using differential geometry in continuum mechanics is that the
material medium is treated as a continuous material space which is embedded into the
three-dimensional physical. i.e. Euclidean. space and can be deformed there. This means
that the geometries for two spaces must be distinguished. A fundamental question is then:
if the geometry of the embedding space is Euclidean. what is the geometry of the material
space. sometimes called the inner geometry?

The most important characteristic of the Euclidean space is that it has no curvature. If
the material space had curvature. then it would not fit into the Euclidean space; hence the
material space should be flat (have no curvature). Such spaces are also said to have
teleparallelism. A flat space is not necessarily Euclidean. but can have additional structure.
This has been studied above all under the condition of the so-called affinely connected. i.e.
locally affine. spaces. The result is that a flat. locally affine space can have two types of
structure which go beyond euclidean and even Riemannian geometry: the first one is Cartan's

torsion and is representative of the elementary line defects (dislocations) in Bravais crystals.
whereas the second one is the f/(J/llllctricity (see Schouten. (954) and describes the elementary
point defects (vacancy. self-interstitial. shear defect) in Bravais crystals. The distinct role
of Bravais lattices with respect to atTine differential geometry has to do with the fact that
these lattices themselves have an alline structure.

J. RIEr-.li\NNIi\N GEOMETRY AND STRESS FREE STRAIN

3.1. rill' strai/l SP(/cl'

It has heen known for a long time that the compatibility equations of elasticity theory
can be formulated as the vanishing of the curvature tensor K~"" formed with a Riemannian
connection 9~'1' a Christofld symbol. This connection is a special case of the connection r~"

of the general allincly connecled space. We have

( 15)

with .chi as the metric tensor. The curvatun: tensors arc

for the Riem~lnnian geometry and

R' - 1( ~ r' r' r p
)""II = - (." ",/ + np tIll [lIml

( 16)

( 17)

for the mon: general alline space. The subscript [/I. Ill] denotes antisymmetriz~ltionin n. Ill.
Note that Riemannian geometry is characterized by r~'l = l/~'/' If we usc. in well-known
notation. f:" = (9.,- i5,,)/2 for the strain tensor in Eulerian description. then K~m' = 0 is
indeed the compatibility equation for the strain. It can easily be written down in full
nonlinearity.

The general solution of I\~ml = O. expressed in 9~'1. is (check!)

( 18)

The (3 x 3)-matrix A is subject to the conditil.?n that by definition g~'l is symmetric in m. I.
It is convenient and admissible to understand A as the matrix of a point transformation (a
deformation) from an initial to a current state. If in the latter we use a coordinate cover
(k') which is dragged along from the cover (k) of the initial system. then

dx' = AZ dx·. d.~ = AZ· d.~·.

Because of the symmetry of g~'1

(19)
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(20)

This means compatibility. In fact. (20) implies

(21)

where u is the displacement field and A; the deformation gradient. The equation g = A' A I

is easily proved. Here A r is the transposed matrix.
So far nothing has been said in this section about the physical nature of the displacement

field. If the displacements are elastic. i.e. their gradient is related to the stress, then the
problem is one of external sources which we do not consider.

Suppose that now the strain £ is a superposition of elastic strain and some spontaneous
stress-free strain, say £*. Then the elastic and stress-free strain taken separately do not
satisfy the compatibility equations; only the total strain. which is a sum of the single strains
in the linearized theory, does this. In this case. the im:nmpatibility tensor needed in the
formalism of eqns (I )-(4) can be calculated as

(22)

It is not particularly ditlicult to ohtain the cnfTI.:spnnding result for the nonlinear case. but
we do not need this for our further reasnning.

The causes for strcss-free strain may he multifarious tcmperature, magnetization.
electric polarization and others. However. we have a dilkrent situation if defects are the
sources of internal stress. This prohlem is treated in the next section.

Here we recall a result well-known from Einstein's relativity theory. namely that every
Riemann tensor can. without loss of information. he replaced hy the Einstein tensor.
denoted hy I:"':

(23)

This formula may he used in three dimensions only.
Due to its definition the Riemann tensor satislies two identities. in recent literature

called the first and second Bianchi identities. Written for the Einstein tensor they are

I:'" = 1:"'. V,/:'" = O. (24)

with V, the symhol of covariant (with respect to .(/~," dilkrentiation. Every tensor satisfying
(24) can be considered as the Einstein tensor of some Riemannian space defined with the
help of E.

3.2. Tilt' stress space
Now compare (24) with (2). The form of these equations is rather similar, the dilli:rence

lying in the two kinds of difrerentiation.
Note that this dilren:nce disappears in the linear approximation, where V, - ('/. The

similarity has become the basis of Schaefer's (1953) analogy between the statics (in the
absence of body forces) and the linearized static theory of general relativity. Ree~dl that in
Eulerian (Cartesian) coordinates (2) holds in the nonlinear theory, too.

In Schaefer's analogy, which was later extended by Minagawa (1962) and by Kondo
(1962). the stress tensor (1 is the Einstein tensor of a space which is now called stress space
or, even better, though less convenient. stress function space. The point is that like the
strain. so also does the stress function play the role of a metric. This follows from the
comparison of (I) and (5) where f. is analog to 1. and 'Ito a.

The analogy would not be very useful. were it restricted to the linearized theory. I have
shown recently (Kroner. 1987). that by a slight modification the analogy can be made true
also for nonlinear media in the situation of Riemannian geometry. It was proved that a
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stress tensor ~'/. called the Riemann stress. can be defined such that the equilibrium
equations assume the form

V,"'~'f = O. ~'J = ~/I. (25)

Here v'" is the symbol of covariant differentiation. but now not in the strain space. where
we use V" but in the stress space defined by:!:. In fact. (25) can be understood as the Bianchi
identities of the stress space. Therefore it is possible to introduce a Christoffel symbol. say
"I.':.". whose metric is closely related to the former stress function. The fulfillment of (25)
implies that of (2) and vice versa. This means that ~" and a" can be mutually converted
(Kroner. 1987).

It is common to define stress tensors by forces acting on area elements. The question
then arises whether area elements in the reference or current state are meant. For the
definition of Riemann stress we need an area element of the riemannian stress space. Thus
the Riemann stress tensor represents the contact force acting on the area element of the
Riemannian space which itself is determined by the stress. Of course. the geometry is that
of the current state.

At first sight the concept of Riemann stress appears strange. in particular as to
practicability. It has. however. the agreeable quality. from a theoretical standpoint. that
differential geometry can be used for static probkllls just as it is used in the strain space.
All static and geometric equations arc then exact. Note that the stress space has not the
same units as the strain space. For instance. the metric Xis not dimcnsionless. This apparent
shortcoming can easily be reconciled.

Consider the difl'crential form

(1.\: = (1.\:./\ (26)

01'( 19). now written in a new form. In (26) (h" is the relative "placement" of two neighboring
points of the material medium. whose relative position in some initial state is d.r.

In the stress space we assign a relative force

dl = (1.\:'. Ip (27)

to the relative placement d.r' and in this way detlne the (3 x 3)-matrix (p. Since we develop
a differential geometry. it is convenient to give dl the dimension of a length-then eqns
(26) and (27) arc equivalent. except for the different meaning of the letters. We may give
dj' and Ip the new dimensions by the introduction of "new" d.l and (P which result from the
"old" dl amI Ip by multiplication \vith a constant of dimension [force/length] . '. We then
form the metric fundamental form with the new quantities as

(28)

where all quantities have the dimensions of common differential geometry. As we had
g = A' A r, we now have X = (P '/f'r. In this section we have studied the relation between
riemannian geometry and elasticity, in particular with the theory of the internal state.
Riemannian geometry is relevant to situations where. due to some physical conditions. a
stress-free strain develops. This is not the case of defects. To treat these. we have to go
beyond Riemannian geometry. This will be done in the next section.

4. M'TINE DIFFERENTIAL GEOMETRY AND DEFECTS

4.1. The strail/ spac£'
Bravais crystals are alfil/£' structures and therefore distinct with respect to affil/e

differential geometry. To discuss some features of this geometry we introduce the abbrevi
ation (Schouten. 1(54)
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<P;mlk: == <Pmlk - <{JU,,,, + (P~m/~

valid for any quantity with three lower indices.
We define also Cartan's torsion by

(30)

with r:" == lk r",lk as the connection and

(31)

as the nonmetricity of the (material) space. Hae V", is the symbol of covariant differ
entiation. now with respect to the connection r",lk rather than to the Christoffel symbol
used in the Riemannian geometry. Finally we define

(32)

Utilizing the permutation prescription of (29) we can write down and prove easily the
identity (Schouten. 1954)

or

which is valid for G, Sand Q as ddil1l:d by (30) (32). It is easy to prove that Sand Q.
hence also:S} and :Q: an: tensors. ,""",kI is antisymmetric in III. k. and Q",u is symmetric in
k, I. lIence :S: and:Q: describe different things.:Gl, finally, is a Riemann connection,
i.e. a Christoffel symbol, therefore not a tensor.

In the last section we have discussed the Christoffel symbol in connection with stress
free strain. For simplicity we shall now assume that such stress-free strain is absent. We
shall, however, also now study a situation of teleparallelislll, i.e. R''''''k = o. The general
solution of this equation has the same form as that of 1\"",1' = 0, namely

(35)

where the matrix A is now arbitrary, because r is no longer symmetric. The form (35) of
the connection determines also the form of the torsion as

(36)

Vanishing of S yields the former result A} = I); + t,II' , which means that non vanishing
torsion leads to an incompatible situation.

All this has been discussed in the literature and is now well-known. Let us then come
to the less-known case of the nonmetrieity {Q:. Our starting point is Schouten's third
identity for the curvature tensor,

(37)

Note that all identities of the curvature tensor originate from definition (17). In our case
of tdeparallclism R"mllkl = 0 and after a short calculation (37) becomes
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r is now given by (35). Every function Q satisfying (38) has the fonn - Vmglk and is
therefore admissible in (34).

The linearized general solution of (38) is

Qmlk = Cmh'k (39)

with an arbitrary symmetric tensor field hlk - Now recall that the tensor g occurring in {G}
is given by g = A' AT for the connection - G;mk/i + S:mk/i' For such a metric connection
(Schouten. 1954) the length measurement is directly bound to the law of parallel dis
placement with the help of the connection. For instance. when a lattice vector is parallel
displaced (using n along itself. say 1000 times. then its start and goal are separated by
1000 atomic spacings. The result of this counting is measured by gkl' Because the result of
the measurement by parallel displacement and by counting lattice steps is the same. we say
that the space is metric with respect to the connection r.

This is no longer so in the nonmetric situation. Now g ::I: A •AT because of the entering
ofQ (or h) in (33). We now have. in linear approximation,

(40)

so that h is a measurc of how much the mctric g must be changed due to a nonmetric
contribution to the connection. Physically, the nonmetricity enters in the form of thc
elementary points defects. For instance. vacancies which are not regarded in the step
counting shorten the distance between two points. It follows that h, thus Q. is a measure
of the density of the point defects. All this has been worked out recently (Kroner, 1990) by
a more formal nonlinear consideration which. however, has not yet been matched to the
present theory.

4.2. The stress space
Since here we deal with the more general atnne geometry. the Bi'lllchi identities also

take a more general form. They read (Schouten. 1954):

(41 )

and

(42)

The general affine curvature (or non-Riemannian curvature) tensor R cannot be replaced by
an Einstein tensor-only that part of R which is antisymmetric in both n. m and I. k.

If, however. Q = O. then covariant derivation and raising and lowering of indices
commute and R becomes antisymmetric also in I. k. Lowering k and multiplying by f.ilkf.1nm

in (41) and (42) leads to

divr S+ 2£ = 0 Ist Bianchi

divr E = 0 2nd Bianchi,

where

is the divergence operation in a space with torsion and

(43)

(44)

(45)
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E- - 1 E"
k - ~f.'lk , (6)

As shown by Stojanovic (1963) and by Kroner (1963) eqns (43) and (44) have exactly the
form of the equilibrium equations of a material medium with force and torque stresses if
E is now interpreted as the (in general nonsymmetric) Riemann-Cartan force stress and S
as the (Riemann-Cartan) torque stress. The general solution of these equations is easily
written down in terms of stress functions and torsion of the stress space. and obviously. the
latter represents the torque stress. It should be clear by now that the concept of stress space
works also in the presence of dislocations. The torque stresses are the specific response to
dislocations. If S = 0, but Q -:f; 0, then the Bianchi identities reduce to

(..n)

where. however. covariant derivation and raising and lowering of indices no longer
commute. Therefore k in part 2 of (47) cannot simply be taken down. If within the concept
of stress space (47) is considered as the equilibrium equations. then the general solution
contains a nonmetricity tensor which represents the specific response to the presem:e of
geometric nonmctricity, i.e. to point defects. This response has the quality of moment
stresses without torque.

5. CONCLUSION

In this work we have tried to show that differential geometry is a useful tool to deal
with certain types of solids with defects. We have restricted ourselves to solids with a
microscopically alline constitution. Such solids are realized hest hy the Bravais crystals. Wo.;
have chosen this type of solid because it is relatively simple. and therefore also the dilli.:rentiaI
geometry used is simple. This is the well-explored geometry of locally alline spaces. Both
the geometry and the statics wen; discussed in terms of this geometry. making use of the
fundamental duality between strain space and stress space. This duality has its origin in tho.;
go.;neral equations of mechanics where position and momentum are recognized as dual
quantities. In this description the theory of the internal mechanical state achieves a very
high symmetry. It is amusing to think that this theory could have some relevance for a
theory of the universe which is a physical system in which we live as ohservers who perceive
internal states only.

The theory shown here admits almost any extension. Solids with more complex (than
alline) structure, and also liquid crystals can be described by a more involved geometry. In
all such theories defects playa fundamental role. and in fact they delt.:rmine to a large
degree the material's properties.

A fundamental quantity in our theory is the connection r. which defines what is parallel
in the considered space. The wish, then, is natural to h<lve a visual impression of this
parallelism which somehow should be inherent in the material's structure. For the Bravais
crystal the relation between the crystalline order and the law of parallelism is immediate.
In crystallography and physics all vectors within one of the three sets of primitive lattice
vectors have always been considered as parallel. The required tcleparallelism implies that
if two vectors at distant points arc parallel, then the parallelism hus an <lhsolute character.
This view was taken by Kondo (1952) and by Bilby /.'( (/1. (1955).

The main characteristics of crystals, namely the existence of three primitive crystallo
graphic directions and the countability of lattice steps entered our theory through the
definition of dislocation and point defect. We have not discussed these definitions in this
work. They become meaningless if we restrict ourselves to Riemannian geometry. i.e. we
eliminate the defects. Hereby we also eliminate the crystallinity. which no longer enters the
theory. Now remember that the stresses occurring in the Riemannian case originuted from
stress-free strain which, perhaps. should be classified as external rather than internaL When
doing so. then the line and point defects are the only sources of internal stress. but they do
not lead to uniquely defined strain (or metric). In fact. setting S = Q = 0 and also R = 0
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(teleparallelism). we have r = {GJ and the pertaining curvature vanishes. Under these
conditions the £ occurring in G may be any (symmetrized) gradient field. as for instance it
would arise if the crystal is deformed from outside. As internal observers we cannot perceive
such an outside deformation. For us. therefore. the strain can be subjected to some side
condition like divergence freedom. This is exactly and for the same reason the situation we
had with the stress function tensor Xwhich we have declared analogous to t. The last result.
namely the analogy also in the side conditions of strain and stress state. seems to support
our interpretation of defect theory in terms of differential geometry. This interpretation
states that from the standpoint of the internal observer both the statics and the geometry
(or kinematics) of affine structures (Bravais crystals) are described adequately by the
differential geometry of affinely connected spaces.
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